Langlands-program

  1. Unipotent classes induced from endoscopic groups, M.S.R.I. preprint series #08220-87, September 1987 –not-online–. {L}
  2. Shalika germs on GSp(4). Orbites unipotentes et représentations, II. Astérisque 171-172 (1989), 195–256 pdf-link. {L}
  3. Orbital integrals on U(3). The zeta functions of Picard modular surfaces, 303–333, Univ. Montréal, Montreal, QC, 1992 pdf-link. {L}
  4. The Subregular germ of orbital integrals Mem. AMS 99, 1992, no. 476, pdf-link. {L}
  5. A simple definition of transfer factors for unramified groups. Representation theory of groups and algebras, 109–134, Contemp. Math., 145, Amer. Math. Soc., Providence, RI, 1993, pdf-link. {L}
  6. Unipotent representations and unipotent classes in SL(n). Amer. J. Math. 115 (1993), no. 6, 1347–1383, behind JSTOR wall. {L}
  7. The twisted endoscopy of GL(4) and GL(5): transfer of Shalika germs. Duke Math. J. 76 (1994), no. 2, 595–632, pdf-link. {L}
  8. Hyperelliptic curves and harmonic analysis (why harmonic analysis on reductive p-adic groups is not elementary). Representation theory and analysis on homogeneous spaces, 137–169, Contemp. Math., 177, Amer. Math. Soc., Providence, RI, 1994, pdf-link. {L}
  9. On the fundamental lemma for standard endoscopy: reduction to unit elements. Canad. J. Math. 47 (1995), no. 5, 974–994, pdf-link. {L}
  10. The fundamental lemma for Sp(4). Proc. Amer. Math. Soc. 125 (1997), no. 1, 301–308, ams-pdf. {L}
  11. (with J. Gordon) Virtual transfer factors. Represent. Theory 7 (2003), 81–100, arXiv:math/0209001. {M}{L}
  12. Can p-adic integrals be computed? Contributions to automorphic forms, geometry, and number theory, 313–329, Johns Hopkins Univ. Press, Baltimore, MD, 2004, arXiv:math/0205207. {M}{L}
  13. (with C. Cunningham) Good orbital integrals. Represent. Theory 8 (2004), 414–457, arXiv:math/0311353. {M}{L}
  14. Orbital integrals are motivic. Proc. Amer. Math. Soc. 133 (2005), no. 5, 1515–1525, arXiv:math/0212236. {M}{L}
  15. A statement of the fundamental lemma. Harmonic Analysis, The Trace Formula, and Shimura Varieties, 643–658, Clay Math. Proc., 4, Amer. Math. Soc., Providence, RI, 2006, arXiv:math/0312227. {L}
  16. (with R. Cluckers and F. Loeser) Transfer principle for the fundamental lemma. Stabilization of the trace formula, Shimura varieties, and arithmetic applications ed. M. Harris, arXiv:0712.0708. {M}{L}
  17. The Mathematical Work of the 2010 Fields Medalists: The Work of Ngô Bao Châu, Notices of the AMS, 58, no. 3, March 2011, 453–458, arXiv:1012.0382. {L}
  18. The fundamental lemma and the Hitchin fibration (after Ngô Bao Châu), Bourbaki seminar 2010-2011, no. 1035, April 2011, arXiv:1103.4066K. {L}
  19. (with J. Gordon) Endoscopic transfer of orbital integrals in large residual characteristic, Amer. J. Math. 138(1), February 2016, pp. 109–148, arxiv:1502.07368. {M}{L}
Advertisements